Artificial Neural Network and Image Processing Based Compressive Strength Prediction

نویسندگان

چکیده

There are many artifacts from various civilizations in our country, reaching day by day. Historical masonry structures also among the that considered cultural heritage. For this reason, detailed examination of these historical structures, testing samples structure and documentation information obtained tests is a very important issue terms ensuring can be transmitted to future generations robust manner. In article, it planned examine stones used with computerized vision technology. different qualities taken quarries will images primarily through camera. Later on, image each sample transferred computer environment features belonging removed processing. tested laboratory their strengths measured. Consequently, data attained results processing compared calibration proposed based analysis method done. As result studies, possible carry out experimental applications environment. Again due studies complex lengthy significantly shortened; some characteristics simple camera measured quickly setting.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of ultimate strength of shale using artificial neural network

A rock failure criterion is very important for prediction of the ultimate strength in rock mechanics and geotechnics; it is determined for rock mechanics studies in mining, civil, and oil wellborn drilling operations. Also shales are among the most difficult to treat formations. Therefore, in this research work, using the artificial neural network (ANN), a model was built to predict the ultimat...

متن کامل

PREDICTION OF COMPRESSIVE STRENGTH AND DURABILITY OF HIGH PERFORMANCE CONCRETE BY ARTIFICIAL NEURAL NETWORKS

Neural networks have recently been widely used to model some of the human activities in many areas of civil engineering applications. In the present paper, artificial neural networks (ANN) for predicting compressive strength of cubes and durability of concrete containing metakaolin with fly ash and silica fume with fly ash are developed at the age of 3, 7, 28, 56 and 90 days. For building these...

متن کامل

Prediction of Pervious Concrete Permeability and Compressive Strength Using Artificial Neural Networks

Pervious concrete is a concrete mixture prepared from cement, aggregates, water, little or no fines, and in some cases admixtures. The hydrological property of pervious concrete is the primary reason for its reappearance in construction. Much research has been conducted on plain concrete, but little attention has been paid to porous concrete, particularly to the analytical prediction modeling o...

متن کامل

EVALUATION OF CONCRETE COMPRESSIVE STRENGTH USING ARTIFICIAL NEURAL NETWORK AND MULTIPLE LINEAR REGRESSION MODELS

In the present study, two different data-driven models, artificial neural network (ANN) and multiple linear regression (MLR) models, have been developed to predict the 28 days compressive strength of concrete. Seven different parameters namely 3/4 mm sand, 3/8 mm sand, cement content, gravel, maximums size of aggregate, fineness modulus, and water-cement ratio were considered as input variables...

متن کامل

Curl Size and Pelt Color Determination of Zandi Lambs Using Image Processing and Artificial Neural Network

In this study, a method based on using image processing and artificial neural network is introduced to determine pelt color and curl size of newborn lambs in Zandi sheep. The data was collected from 300 newborn lambs reared in the Zandi sheep breeding centre of Khojir, Tehran. Primarily, curl size and pelt color of new born lambs was recorded by experienced appraisers, and at the same time, sev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Erzincan University Journal of Science and Technology

سال: 2021

ISSN: ['1307-9085', '2149-4584']

DOI: https://doi.org/10.18185/erzifbed.894649